Games, graphs, and machines
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Distinguishable strings

Let L be a language.

Say that L distinguishes x and y if there exists a z such that exactly one
of xz or yz is in L.
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Indistinguishable strings

Say that x ~ y if L cannot distinguish x and y.

Proposition: ~y is an equivalence relation.
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How do we know x ~ y?

Suppose L has a DFA M.

. If x and y end at the same state in M, then x ~ y.
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How do we know x ~ y?

Suppose L has a DFA M.

Proposition: If x and y end at the same state in M, then x ~, y.

Proposition: The number of ~; equivalence classes is at most the
number of states of M.
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Let L = {Palindromes}.
Proposition: 01,001,0001,00001, - - - are distinguishable.

Consequence: There is no DFA for L.



The Myhill-Nerode Theorem

: L is regular if and only if ~; has finitely many equivalence
classes.
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